52 research outputs found

    Effect of Sensory Feedback from the Proximal Upper Limb on Voluntary Isometric Finger Flexion and Extension in Hemiparetic Stroke Subjects

    Get PDF
    This study investigated the potential influence of proximal sensory feedback on voluntary distal motor activity in the paretic upper limb of hemiparetic stroke survivors and the potential effect of voluntary distal motor activity on proximal muscle activity. Ten stroke subjects and 10 neurologically intact control subjects performed maximum voluntary isometric flexion and extension, respectively, at the metacarpophalangeal (MCP) joints of the fingers in two static arm postures and under three conditions of electrical stimulation of the arm. The tasks were quantified in terms of maximum MCP torque [MCP flexion (MCPflex) or MCP extension (MCPext)] and activity of targeted (flexor digitorum superficialis or extensor digitorum communis) and nontargeted upper limb muscles. From a previous study on the MCP stretch reflex poststroke, we expected stroke subjects to exhibit a modulation of voluntary MCP torque production by arm posture and electrical stimulation and increased nontargeted muscle activity. Posture 1 (flexed elbow, neutral shoulder) led to greater MCPflex in stroke subjects than posture 2 (extended elbow, flexed shoulder). Electrical stimulation did not influence MCPflex or MCPext in either subject group. In stroke subjects, posture 1 led to greater nontargeted upper limb flexor activity during MCPflex and to greater elbow flexor and extensor activity during MCPext. Stroke subjects exhibited greater elbow flexor activity during MCPflex and greater elbow flexor and extensor activity during MCPext than control subjects. The results suggest that static arm posture can modulate voluntary distal motor activity and accompanying muscle activity in the paretic upper limb poststroke

    Design considerations for a wearable monitor to measure finger posture

    Get PDF
    BACKGROUND: Objective measures of hand function as individuals participate in home and community activities are needed in order to better plan and evaluate rehabilitation treatments. Traditional measures collected in the clinical setting are often not reflective of actual functional performance. Recent advances in technology, however, enable the development of a lightweight, comfortable data collection monitor to measure hand kinematics. METHODS: This paper presents the design analysis of a wearable sensor glove with a specific focus on the sensors selected to measure bend. The most important requirement for the glove is easy donning and removal for individuals with significantly reduced range of motion in the hands and fingers. Additional requirements include comfort and durability, cost effectiveness, and measurement repeatability. These requirements eliminate existing measurement gloves from consideration. Glove construction is introduced, and the sensor selection and glove evaluation process are presented. RESULTS: Evaluation of commercial bend sensors shows that although most are not appropriate for repeatable measurements of finger flexion, one has been successfully identified. A case study for sensor glove repeatability using the final glove configuration and sensors does show a high degree of repeatability in both the gripped and flat hand positions (average coefficient of variability = 2.96% and 0.10%, respectively). CONCLUSION: Measuring functional outcomes in a portable manner can provide a wealth of information important to clinicians for the evaluation and treatment of movement disorders in the hand and fingers. This device is an important step in that direction as both a research and an evaluation method

    Modulation of Stretch Reflexes of the Finger Flexors by Sensory Feedback from the Proximal Upper Limb Poststroke

    Get PDF
    Neural coupling of proximal and distal upper limb segments may have functional implications in the recovery of hemiparesis after stroke. The goal of the present study was to investigate whether the stretch reflex response magnitude of spastic finger flexor muscles poststroke is influenced by sensory input from the shoulder and the elbow and whether reflex coupling of muscles throughout the upper limb is altered in spastic stroke survivors. Through imposed extension of the metacarpophalangeal (MCP) joints, stretch of the relaxed finger flexors of the four fingers was imposed in 10 relaxed stroke subjects under different conditions of proximal sensory input, namely static arm posture (3 different shoulder/elbow postures) and electrical stimulation (surface stimulation of biceps brachii or triceps brachii, or none). Fast (300°/s) imposed stretch elicited stretch reflex flexion torque at the MCP joints and reflex electromyographic (EMG) activity in flexor digitorum superficialis. Both measures were greatest in an arm posture of 90° of elbow flexion and neutral shoulder position. Biceps stimulation resulted in greater MCP stretch reflex flexion torque. Fast imposed stretch also elicited reflex EMG activity in nonstretched heteronymous upper limb muscles, both proximal and distal. These results suggest that in the spastic hemiparetic upper limb poststroke, sensorimotor coupling of proximal and distal upper limb segments is involved in both the increased stretch reflex response of the finger flexors and an increased reflex coupling of heteronymous muscles. Both phenomena may be mediated through changes poststroke in the spinal reflex circuits and/or in the descending influence of supraspinal pathways

    Survivors of Chronic Stroke Experience Continued Impairment of Dexterity But Not Strength in the Nonparetic Upper Limb

    Get PDF
    Objective To investigate the performance of the less affected upper limb in people with stroke compared with normative values. To examine less affected upper limb function in those whose prestroke dominant limb became paretic and those whose prestroke nondominant limb became paretic. Design Cohort study of survivors of chronic stroke (7.2±6.7y post incident). Setting The study was performed at a freestanding academic rehabilitation hospital. Participants Survivors of chronic stroke (N=40) with severe hand impairment (Chedoke-McMaster Stroke Assessment rating of 2-3 on Stage of Hand) participated in the study. In 20 participants the prestroke dominant hand (DH) was tested (nondominant hand [NH] affected by stroke), and in 20 participants the prestroke NH was tested (DH affected by stroke). Interventions Not applicable. Main Outcome Measure Jebsen-Taylor Hand Function Test. Data from survivors of stroke were compared with normative age- and sex-matched data from neurologically intact individuals. Results When combined, DH and NH groups performed significantly worse on fine motor tasks with their nonparetic hand relative to normative data (PP\u3e.140). Conclusions Survivors of stroke with severe impairment of the paretic limb continue to present significant upper extremity impairment in their nominally nonparetic limb even years after stroke. This phenomenon was observed regardless of whether the DH or NH hand was primarily affected. Because this group of survivors of stroke is especially dependent on the nonparetic limb for performing functional tasks, our results suggest that the nonparetic upper limb should be targeted for rehabilitation

    Development of a 3D, networked multi-user virtual reality environment for home therapy after stroke

    Get PDF
    Abstract Background Impairment of upper extremity function is a common outcome following stroke, to the detriment of lifestyle and employment opportunities. Yet, access to treatment may be limited due to geographical and transportation constraints, especially for those living in rural areas. While stroke rates are higher in these areas, stroke survivors in these regions of the country have substantially less access to clinical therapy. Home therapy could offer an important alternative to clinical treatment, but the inherent isolation and the monotony of self-directed training can greatly reduce compliance. Methods We developed a 3D, networked multi-user Virtual Environment for Rehabilitative Gaming Exercises (VERGE) system for home therapy. Within this environment, stroke survivors can interact with therapists and/or fellow stroke survivors in the same virtual space even though they may be physically remote. Each user’s own movement controls an avatar through kinematic measurements made with a low-cost, Kinect™ device. The system was explicitly designed to train movements important to rehabilitation and to provide real-time feedback of performance to users and clinicians. To obtain user feedback about the system, 15 stroke survivors with chronic upper extremity hemiparesis participated in a multisession pilot evaluation study, consisting of a three-week intervention in a laboratory setting. For each week, the participant performed three one-hour training sessions with one of three modalities: 1) VERGE system, 2) an existing virtual reality environment based on Alice in Wonderland (AWVR), or 3) a home exercise program (HEP). Results Over 85% of the subjects found the VERGE system to be an effective means of promoting repetitive practice of arm movement. Arm displacement averaged 350 m for each VERGE training session. Arm displacement was not significantly less when using VERGE than when using AWVR or HEP. Participants were split on preference for VERGE, AWVR or HEP. Importantly, almost all subjects indicated a willingness to perform the training for at least 2–3 days per week at home. Conclusions Multi-user VR environments hold promise for home therapy, although the importance of reducing complexity of operation for the user in the VR system must be emphasized. A modified version of the VERGE system is currently being used in a home therapy study

    Involuntary Neuromuscular Coupling between the Thumb and Finger of Stroke Survivors during Dynamic Movement

    No full text
    Finger–thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger–thumb coupling during close–open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb (p < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing (p < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI (p < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm (p < 0.001). A greater effect was seen during the opening phase (p < 0.044). Thus, involuntary finger–thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct intervention to improve poststroke hand mobility and provide insight on prospective neurologically oriented therapies

    Optimized Model Selection for Concurrent Decoding of Finger Kinetics and Kinematics

    No full text
    Myoelectric-based motor intent detection is typically used to interface with assistive devices. However, the intent detection performance is sensitive to interference of electromyogram (EMG) signals. Recently, EMG signals are decomposed into motor units (MU) firing activities, and neuron binary firing activities can be used to predict motor output in a continuous manner. Different functions that map MU firings to motor output have been implemented, and both composite MU firing frequency and individual MU firing frequency have been used. It is unclear whether one mapping function outperform others. Accordingly, we evaluated three MU-based finger kinetic and kinematic prediction models, by varying the number of MUs and the method of including MU firings into the regression model. We also compared the performance of three EMG amplitude-based models with varying number of channels. We performed MU decomposition in advance for real-time implementations. Our results showed that individual firing frequency of five MUs provided the lowest estimation error (force: 4.66±0.36 %MVC; joint angle: 4.81±0.49°) and highest correlation (force: 0.86±0.01; joint angle: 0.93±0.01) with the measured motor outputs, when compared with mapping method using the populational firing frequency of all MUs or the populational firing frequency of a group of MUs with similar firing activities. The results indicated that firing information at the population level may mask critical information of individual MU firings. These findings allowed us to identify the optimal models for concurrent and continuous finger force and joint angle estimation. A combination of the minimal level of complexity and high accuracy make these models suitable for real-time control of assistive robotic devices

    Mechanical aspects of robot hands, active hand orthoses, and prostheses: A comparative review

    No full text
    The large interest in robot hands and active hand prostheses has in recent years been joined by that in active hand orthoses. Despite the differences in intended uses, these three categories of artificial hand devices share key characteristics. Examination of the commonalities could stimulate future design. Thus, in this article, we undertook a comparative review of publications describing robot hands, active prostheses, and active orthoses, with a focus on mechanical structure, actuation principle, and transmission. Out of a total of 510 papers identified through the literature search, 72 publications were included in a focused examination. We identified trends in the design of artificial hands and gaps in the literature. After comparing their mechanical aspects, we propose recommendations for future development
    • …
    corecore